

 Getting Started with
CodeIgniter 4
CodeIgniter 4 at first glance.

Start learning how to start using some of the new features in CodeIgniter 4
a Special Thank you and all Credit goes to Kilishan of New Myth Media for
all of his time and hard work on this CodeIgniter 4 Document.

2017

PDF file by Raymond King
Custom Software Designers, LLC. (InsiteFX)

8/16/2017

Table of Contents
NOTE: ... 6

The articles in this document are based on unreleased, pre-alpha versions of the software
and specifics may have changed. ... 6

This should not be used for a Production Website.. 6

Requests and Responses In CodeIgniter 4 .. 7

At A Glance ... 7

IncomingRequest... 7

Response .. 8

A Quick Example .. 8

Content Negotiation in CodeIgniter 4 ...11

What Is Content Negotiation? ...11

A Quick Example ..12

Dependency Injection in CodeIgniter 4 ...14

Why Is DI Important? ...14

The Rise and Fall of the Container ..16

Services ...17

A Quick Example ..19

Coupling? ..20

Routes in CodeIgniter 4 ...21

Route Basics ..21

Module-like Functionality ...22

Closures ..22

Placeholders..23

HTTP Verbs..24

Generating standard Resource routes ...24

No More Magic ..25

Groups ...25

Environment Groups ...26

Redirect Old Routes..26

Using Routes In Views ...26

Named Routes ..27

Reverse Routing ..27

Global Options ..28

Need More? Customize it ..28

Modules in CodeIgniter 4 ..29

Module/HMVC Support? ...29

Autoloading and Namespaces ...29

A Quick Example ..30

What About Non-Class Files? ...32

Loading Helpers ..32

Loading Views..32

First Glimpse at CodeIgniter 4 Database Layer ..34

What's the Same?...34

What's different? ...34

Configuration ...34

Raw Queries ...36

Saved Queries ..37

Query Builder ..38

What's Still Coming? ...39

CodeIgniter 4 HTTP Client ..41

The CURLRequest Class ...41

A Few Quick Examples ...42

A Single Call ...42

Consuming an API..42

Submitting A Form ...43

Multitude of Options ..43

Getting Started With CodeIgniter 4 Pre-Alpha 1 ..45

Download It ...45

Look Around ...45

Start Playing ..46

PHP Server ...47

Virtual Host ..47

Using Entities in CodeIgniter 4 ...49

Getting Entities from the Model ...49

The Entity Class ..51

Saving the Entity ..52

Up Next ..53

Better Entities in CodeIgniter 4 ..55

Getters and Setters ..55

Filler ...58

The Entity Class...59

Upgrading the Parser in CodeIgniter 4 ..67

The More Things Change ..67

The Little Things..68

Conditional Logic ..68

No-Parse Blocks...68

Comments ...69

Automatic Escaping..69

The Bigger Things ...70

Filters ...70

Plugins ...71

Creating a New Base Controller ..73

The BaseController ...74

The AdminController ...76

The PublicController ..78

The Modified Home Controller ...80

Special Thanks to kilishan of New Myth
Media for his hard work on this.

NOTE:

The articles in this document are based on
unreleased, pre-alpha versions of the software
and specifics may have changed.

This should not be used for a Production Website.

https://forum.codeigniter.com/user-18.html

Requests and Responses In CodeIgniter 4
By Lonnie Ezell on Mar 02, 2016 5 Comments codeigniter

One of the biggest changes, conceptually, in CodeIgniter 4 is the way
that Input and Output is handled. In prior versions, including the
latest v3 releases, Input and Output were handled as two classes that
contained mostly related functionality. There wasn't any "grand
scheme" behind it, but it still worked pretty nicely. In v4, though,
we've modeled the HTTP layer much more closely, building a new
hierarchy of classes to represent the common HTTP requests and
responses.

At A Glance
When working with web applications - as opposed to CLI-only
services - you'll really just need to worry about two
classes: IncomingRequest and Response.

IncomingRequest
The IncomingRequest class provides access to the HTTP request and
all of the side data that comes with it, including:

• GET, POST, SERVER, and ENV variables
• Headers
• Cookies
• the URL object that is currently being looked at
• uploaded files

and provides convenience methods for things like:

• client IP Address
• is it an AJAX request?
• is it a CLI request?
• is it over HTTPS?

http://blog.newmythmedia.com/blog/show/2016-03-02_Requests_and_Responses_In_CodeIgniter_4
http://blog.newmythmedia.com/blog/show/2016-03-02_Requests_and_Responses_In_CodeIgniter_4#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter

If you're wondering about the difference in naming, and, "Shouldn't
IncomingRequest be simply Request?" the answer is nope. There
already is another Request class that is more generic and doesn't
know the details of an HTTP request, which contains all of the fun
stuff like GET and POST vars. A Request can be one of two things:
either the request that a client browser has made to the server
(incoming); or a request that you are sending out to an external
server, (outgoing).

Response
The response class is what you work with to build your response to
the client. You can assign headers, set the output directly, and more.
It provides convenience methods for things like:

• setting appropriate no-cache headers
• working with HTTP cache headers
• redirecting to a new page

A Quick Example
This may sound like it's going to be pretty technical to work with, but
it's really not. The controller already has an instance of the classes as
properties, but for simple work, you'll never even need to use them.
Any output from the controller is captured and automatically set as
the body of the Response. A Hello World example might look like
this:

class Home extends \CodeIgniter\Controller

{

 public function index()

 {

 echo "Hello World!";

 }

}

Easy, peasy.

What this does do, though, is provide you the ability to really dig in
and fine-tune the response if you need to. You can create with
complex HTTP caching strategies, work with the IncomingRequest to
tailor your response through Content Negotiation, and much more.

Here's a slightly more involved example, though you'll see it's all
easily readable, and simple to work with.

class Home extends \CodeIgniter\Controller

{

 public function __construct(...$params)

 {

 parent::__construct(...$params);

 // This controller is only accessible via HTTPS

 if (! $this->request->isSecure())

 {

 // Redirect the user to this page via HTTPS, and set the Strict-
Transport-Security

 // header so the browser will automatically convert all links to this
page to HTTPS

 // for the next year.

 force_https();

 }

 }

 public function index()

 {

 $data = [

 ...

];

 // Set some HTTP cache rules for this page.

 $this->response->setCache([

 'max-age' => 300,

 's-max-age' => 900,

 'etag' => 'foo'

]);

 // Return JSON

 $this->response->setContentType('application/json')

 ->setOutput(json_encode($data));

 }

}

In this example, we've done three primary things. First, we forced
this page to be accessed via HTTPS by both a redirect to the HTTPS
version of the current URL, and by setting a Strict-Transport-Security
header, which is supported by most of the major browser vendors
and lets the browser convert the URL to HTTPS automatically before
ever sending the request. Second, we're setting some HTTP cache
rules to help the browser know when it can reuse data it already has
and when it can't, which means fewer HTTP requests, never hitting
the server, and increasing performance to boot. Finally, we're
outputting some JSON data to the user, ensuring that the correct
content type is set.

Hopefully, this helps to get a glimpse at the future of CodeIgniter,
and realize that change doesn't always have to be scary :) More
articles will come in the future talking about the concepts of the
framework as more and more parts are pinned down to a fairly
stable place.

Content Negotiation in CodeIgniter 4
By Lonnie Ezell on Mar 03, 2016 0 Comments codeigniter

For many CodeIgniter developers, the idea of Content Negotiation is
probably a unfamiliar one. I know it was for me when I started
working on the HTTP layer. So, let’s take a look at what it is, and then
how it can be used in the upcoming CodeIgniter 4.

What Is Content Negotiation?
In its simplest terms, Content Negotiation is your website and the
user’s browser working together to decide the best type of data to
return. This is done via several Accept headers the browser can send,
that can specify the language to return the page in, the types of
images it likes, encodings that it supports, and more.

As an example, when I visit Mozilla’s site in Chrome, I see these
headers:

• accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,/;q=0.8

• accept-encoding:gzip, deflate, sdch
• accept-language:en-US,en;q=0.8

This tells us that the browser can support the formats in
the accept header and provides us information (via the q score)
about how the preferences are ordered. In this case, it would prefer
the response as text/html over all of the other formats. Because of
settings in my browser, the accept-language header says that I would
like to read the page in American English (en-US).

Obviously, the web still works even if we don’t perform any form of
content negotiation. We’ve done it for years just fine without
worrying about it. To be fair, the web server itself can do some forms
of conneg for us, but we don’t typically take advantage of that, either.
That doesn’t mean it’s not handy, though.

http://blog.newmythmedia.com/blog/show/2016-03-03_Content_Negotiation_in_CodeIgniter_4
http://blog.newmythmedia.com/blog/show/2016-03-03_Content_Negotiation_in_CodeIgniter_4#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter

The two times that having this ability is really appealing is for sites
that support multiple languages, or for API’s that can use it to return
the data in specific formats, and more.

Should you always use it? Probably not. There are pros and cons, and
some people who claim it should never be used, with others thinking
it’s the greatest thing since sliced bread. But if you need it, it’s simple
in CodeIgniter.

A Quick Example
I won’t get into all of the details here (we’ll save that for the docs),
but here’s a simple example of how it might be used to determine
language.

class BaseController extends \CodeIgniter\Controller

{

 protected $language;

 public function __construct(...$params)

 {

 parent::__construct(...$params);

 $supportedLangs = ['en-US', 'en', 'fr'];

 $this->language = $this->request->negotiate('language', $supportedLangs);

 }

}

In this example, our site can display the content in either English and
French. We assign that to the $supportedLangsarray, which says that
our default language is American English, but we can support generic
English, and also French. Then, we simply call $negotiate-
>language(), passing it the values that we support, and it will parse

the correct header, sort by it's order of priority, and return the best
match. If there isn't a match between the two, the first element in
our supported values array is returned.

The four negotiation methods in the class are:

• media() which matches values against the generic Accept header, and
can be used to ask for different versions of html/text, or audio
support, image support, and more.

• charset() matches against the Accept-Charset header. The default
value, if no match is made, is UTF-8.

• encoding() matches against the Accept-Encoding header, and helps to
determine the type of compression, if any, that the client supports.

• language() matches against the Accept-Language header.

While this is not something that will be used all of the time, it is a tool
that could prove itself extremely helpful for building out quailty
API's, and can probably be used creatively in other areas, also.

Dependency Injection in CodeIgniter 4
By Lonnie Ezell on Mar 04, 2016 4 Comments codeigniter

I remember reading a forum thread during the time that we were
originally asking for community input on the future of the
framework. In it, they ridiculed the community for even considering
whether or not we would be using Dependency Injection. At the time,
I believe the council was pretty set on having it, but we were letting
the discussions and suggestions arise naturally within the
community. I read another forum thread the other day on a different
site that was looking at our features and wondering why we were
bothering since it just read like Laravel, due in large part to the DI,
the namespacing, the PSR4 autoloading, etc. I guess you just can't
please everyone, right?

Why Is DI Important?
Dependency Injection decouples your code from other, specific,
classes. When used correctly, it allows you to easily replace
dependencies with mock classes during testing, or replace the
dependency with a completely different class that handles the task
better. In short, it makes the code more resilient to change. It makes
it more portable. It's a good thing, without a doubt. If you've spent
most of your PHP career using CodeIgniter, you might not have run
across Dependency Injection before, so a short example will help
clear things up.

Note: The database layer is still under early development. This is
purely an example.
Let's say you have a model for managing Users. You will, naturally
need the database class to work with, so without DI you might do
something like:

class UserModel

{

http://blog.newmythmedia.com/blog/show/2016-03-04_Dependency_Injection_in_CodeIgniter_4
http://blog.newmythmedia.com/blog/show/2016-03-04_Dependency_Injection_in_CodeIgniter_4#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter

 protected $db;

 public function __construct()

 {

 $this->db = new Database();

 }

}

But there's a problem here. If you ever need to use a different
database library, or switch from MySQL to MongoDB, you have to
change code in every class. If you're running tests, you can never
separate the logic in your UserModel from the Database class. Long
term maintenance can become a problem, too.

To fix this, the next step is to pass the Database class into the
constructor as a dependency. This solves all of those problems,
especially when you're requiring the a class that implements an
interface, instead of any specific class.

class UserModel

{

 protected $db;

 public function __construct(DatabaseInterface $db)

 {

 $this->db = $db;

 }

}

This is the purest form of Dependency Injection. Any external classes
needed are injected into the class, either through the constructor, as
shown here, or through a setter method.

Within the core of CodeIgniter 4, constructor-based DI is used
everywhere. While this has advantages for the developers of the
framework, it has huge implications for you. No longer do you
need MY_* classes to extend or replace core files. Now, you can
simply create a new class that conforms to the Interface we're
expecting, and ensure that class is passed in it's place. How you make
sure it gets used instead of the original file requires a bit more story.

The Rise and Fall of the Container
If you spend any time at all reading up on "modern PHP" best
practices, you'll always see a DI Container (sometimes called an
Inversion of Control Container) used. Most of the major frameworks
use one, including Symfony, Laravel, Nette, Zend, and most others.
Because of this, my natural first reaction was to create one for the
framework. I thought it turned it pretty sweet. You could configure
classes with their alias, and, through the magic of Reflection, it would
examine the constructor and automatically insert a shared instance
of any configured classes, or parameters. It worked great, and was
pretty fast.

Then I read a blog post by Anthony Ferrara that was discussing the
differences between simple and easy when it comes to
programming, and recomended optimizing for simplicty. One section
in particular hit a chord: "A simple example is the way many PHP
frameworks have adopted 'Dependency Injection' . . . But what if
instead of using this complex system, we just created a series of
functions? Real code that you can debug and understand." Bam. This
was shortly after I had written the container, thinking the problem
solved. This comment gnawed inside of me for a couple of weeks.

At first, I tried to make excuses about why we needed that container.
But as I looked back on the things that keep bringing me back to
CodeIgniter over the last 10 years, I realized a big part of it was the
simplicity of the framework. It was simple code, that made things
simple to understand and trust. You didn't have to wade through 6
different abstractions to understand what was going on. So, I ripped

https://github.com/newmythmedia/di
http://blog.ircmaxell.com/2015/11/simple-easy-risk-and-change.html

the container out, replacing it with a simple class that was just "a
series of functions".

And you know what? It works great. It even came with a few
unintended benefits, the biggest being that backtraces during errors
are MUCH more understandable now. I'm currently working on a
project that's using Laravel and get so frustrated by the backtrace
being full of 15 calls through Laravel's sub-structure before I can find
my code, if I even can.

Services
At the core of the way this whole thing ties together is the Services
config file. While it's possible that the name may change, Services are
simply other classes, and the config file tells how to call them. Almost
all of the core has an entry here. So, a quick look at a couple of the
Services methods to see how they work, and then we'll move on to a
quick example of Services and DI as you'd use it in your application.

/**

 * The Logger class is a PSR-3 compatible Logging class that supports

 * multiple handlers that process the actual logging.

 */

public static function logger($getShared = false)

{

 if (! $getShared)

 {

 return new \CodeIgniter\Log\Logger(new \Config\Logger());

 }

 return self::getSharedInstance('logger');

}

Here's a service at it's simplest. All of the methods allow you to get
either a brand new instance of the class, or one that's shared among
all other uses, which is a great option for things like this logger,
where there's no real reason to waste memory on multiple instances.
Assuming that you did want the shared instance, you'd simply
call $logger = Config\Servies::logger(true).

Because they are just simple methods, some of them support
parameters to customize how the class works. For instance,
the renderer() method, which handles displaying views, can take the
path to the views folder as the first parameter.

/**

 * The Renderer class is the class that actually displays a file to the user.

 * The default View class within CodeIgniter is intentionally simple, but this

 * service could easily be replaced by a template engine if the user needed to.

 */

public static function renderer($viewPath = APPPATH.'Views/', $getShared = false)

{

 if (! $getShared)

 {

 return new \CodeIgniter\View\View($viewPath, self::loader(true), CI_DEBUG,
self::logger(true));

 }

 return self::getSharedInstance('renderer');

}

If you want to replace the renderer with a simple solution to use a
template engine like Twig, you'd create a small adapter class that
implented the CodeIgniter\View\RenderableInterface and modify
the Services::renderer() method to return an instance of your new
adapter class. Then, you could call the view() command that is

always available, and it would use Twig instead of the simple view-
based solution that CodeIgniter provides. Couldn't be simpler.

Alright, you've seen how to define the services, and we've talked
about why DI is a great thing, so it's time to take a look at how to use
the two together in your own application.

A Quick Example
Using Dependency Injection in your applications is not required,
though it's recommended. The framework itself uses these files, and
they provide a simple way to modify the core, but any other use by
yourself is optional.
With that disclaimer out of the way, let's look at our UserModel again.
Assume that we're in the Users controller and you need to pull all
active users. Earlier, we showed the UserModel taking a Database
object in it's constructor. Ignoring the exact class names for now,
getting a new instance of the model would be done something like
this:

class Users extends \CodeIgniter\Controller

{

 public function index()

 {

 $model = new UserModel(Config\Services::database());

 $data = [

 'users' => $model->findAll()

];

 echo view('users/list_all', $data);

 }

}

This way, if you ever change the database solution, you don't have to
hunt around trying to find every location. Simply change it in the
Services config file, and you're golden. If you're only using a single
database connection, you could modify the database() service to
insert the correct config, etc. Since there is actually a couple of
parameters needed to create a database connection, you could make
things even simpler and create a new service for your model if you
needed to.

Remember - all database stuff shown here is for example only, and
doesn't reflect the end product in any fashion!

Coupling?
As a keen observer, you might be yelling at me that this added
services stuff just moves the coupling of these classes from the
libraries, models, etc, to the controller. And you'd be correct. At some
point, though, you have to be able to specify which classes you want
to use.

And the truth is that is what a Controller's job is. It glues the other
pieces together. It is the one piece of your application that should be
tightly coupled with your framework. If you design the rest of your
application correctly, it's about the only place that even knows about
the framework you're using. And that's great. If, some years down
the road, you need to switch frameworks for some reason (it
happens, unfortunately), you will mostly just have to change the
controllers.

Even better - this simple Services class further reduces your
dependency on any specific framework. It's just a simple class, and
could be used with any framework you wanted to use.

Routes in CodeIgniter 4
By Lonnie Ezell on Mar 08, 2016 2 Comments codeigniter

Routes in CodeIgniter have gone through a pretty big upgrade from
version 3 to 4. This article will give a 100-foot view of some of the
new changes, and give you something to look forward to.

Route Basics
As a refresher, in version 3 routes were specified in a simple array,
where each key was the "URI from" and the value of the element was
where it should be routed to. It was simple, elegant, worked great,
and looked something like this:

$route['join'] = 'home/register';

$route['login'] = 'home/login';

$route['products/(:any)/details'] = 'products/show/$1';

The capability of routers in other frameworks has surpassed the
simple elegance we have enjoyed for years. Even in the CodeIgniter
community, there have been several router replacements people
could use. So, it was time for an upgrade.

The first thing we had to do was to make it use a class, instead of a
simple array. We tried to stick with using simple arrays to increase
functionality, but it became too much of an complex beast. So, the
new routes would look like this:

$routes->add('join', 'Home::register');

$routes->add('login', 'Home::login');

$routes->add('products/(:segment)', 'Products::show/$1');

While the "to" portion of the route looks different, the functionality is
much the same here. The join route is being directed to
the Home controller, and its register() method. The products route is

http://blog.newmythmedia.com/blog/show/2016-03-08_Routes_in_CodeIgniter_4
http://blog.newmythmedia.com/blog/show/2016-03-08_Routes_in_CodeIgniter_4#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter

being directed to the Productscontroller, with the
captured (:segment) being passed to the show() method. While it
might appear that the controllers must now use static methods, that
is not the case. The familiar syntax was used to specify the
controller/method combination only, and methods are not allowed
to be static.

Module-like Functionality
Why the new format? Because we don't want to restrict you to
controllers in the /application/Controllersdirectory. Instead, you
can now route to any class/method that the system can find through
its new PSR-4 compatible autoloader. This makes it a breeze to
organize code in module-like directories.

For example, if you have a Blog "module" under the
namespace App\Blog, you could create some routes like so:

$routes->add('blog', 'App\Blog\Blog::index');

$routes->add('blog/category/(:segment)', 'App\Blog\Blog::byCategory/$1');

If the Blog controller lives under application/Controllers, great. But
if you want to move it into it's own folder, say application/Blog, you
can update the autoloader config file and everything still works.

Closures
Routes no longer have to mapped to a controller. If you have a
simple process you can route to an anonymous function, or Closure,
that will be ran in place of any controller.

$routes->add('pages/(:segment)', function($segment)

{

 if (file_exists(APPPATH.'views/'.$segment.'.php'))

 {

 echo view($segment);

 }

 else

 {

 throw new CodeIgniter\PageNotFoundException($segment);

 }

});

Placeholders
I'm sure you've noticed a different placeholder than you're used to in
the routes: (:segment). This is one of a handful that come stock with
CodeIgniter, and is used to replace the (:any) that is in v3 and clear
up any confusion. Now, the system recognizes the following
placeholders:

• (:any) will match all characters from that point to the end of the URI.
This may include multiple URI segments.

• (:segment) will match any character except for a forward slash (/)
restricting the result to a single segment.

• (:num) will match any integer.
• (:alpha) will match any string of alphabetic characters
• (alphanum) will match any string of alphabetic characters or integers,

or any combination of the two.

It doesn't stop there, though. You can create your own at the top of
the routes file by assigning a regular expression to it, and then it can
be used in any of the routes, making your routes much more
readable.

$routes->addPlaceholder('uuid', '[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-
9a-f]{12}');

$routes->add('users/(:uuid)', 'Users::show/$1');

HTTP Verbs
So far, I've been using the generic add method to add a new route.
Routes added this way will be accessible through any HTTP-verb,
whether it's a GET request, POST, PATCH, or even from the command
line. It's recommended, though, to restrict the route to only the type
of access you need.

$routes->get('products', 'Product::feature');

$routes->post('products', 'Product::feature');

$routes->put('products/(:num)', 'Product::feature');

$routes->delete('products/(:num)', 'Product::feature');

$routes->match(['get', 'post'], 'products/edit/(:num)', 'Product::edit/$1');

$routes->cli('maintenance/on', 'CLITools::maintenanceModeOn');

Generating standard Resource routes
When working on API's it's best to keep a standard set of routes
mapping to the same methods in each controller, just to make
maintenance simpler. You can can easily do this with
the resources method:

$routes->resources('photos');

This will create the 5 standard routes for a resource:

HTTP Verb Path Action Used for...

GET /photos listAll display a list of photos

GET /photos/{id} show display a specific photo

POST /photos create create a new photo

PUT /photos/{id} update update an existing photo

HTTP Verb Path Action Used for...

DELETE /photos/{id} delete deletes an existing photo

The routes can have a fair amount of customization to them through
by passing an array of options in as the second parameter, but we'll
leave those for the docs.

No More Magic
By default, the URI will attempt to be matched up to a
controller/method if no route exists for it. This is very convenient
and, for those familiar with it, makes it a breeze to find where the
code is that you're trying to use. Sometimes, though, you don't want
this functionality.

For example, you might be building an API, and want a single
location to serve as documentation for the API. This can be easily
handled by turning off the autoRoute feature:

$routes->setAutoRoute(false);

Now, only routes that have been defined can be served up by your
application.

Groups
Routes can be grouped together under a common prefix, reducing
the amount of typing needed and helping to organize the routes.

$routes->group('admin', function($routes) {

 $routes->add('users', 'Admin\Users::index');

 $routes->add('blog', 'Admin\Blog::index');

});

These routes would now all be available under an 'admin' segment in
the URI, like:

• example.com/admin/users
• example.com/admin/blog

Environment Groups
Another form of grouping, environment() allows you to restrict some
routes to only work in a specific environment. This can be great for
building some tools that only work on develoment machines, but not
on the production server.

$routes->environment('development', function($routes)

{

 $routes->add('builder', 'Tools\Builder::index');

});

Redirect Old Routes
If your site has some pages that have been moved, you can assign
redirect routes that will send a 302 (Temporary) Redirect status and
send the user to the correct page.

$routes->addRedirect('users/about', 'users/profile');

This will redirect any routes that match users/about to the new
location at users/profile.

Using Routes In Views
One of the more fragile things when building links within views is
having your URIs change, which forces you to edit the links
throughout your system. CodeIgniter now provides a couple of
different tools to help get around this.

Named Routes
Anytime you create a route, a name is made for it. By default, this is
the same as the "from" portion of the route definition. However, this
doesn't help, so you can assign a custom name to the route. This can
then be used with the route_to() function that is always available to
return the correct relative URI.

// Create the route

$route->add('auth/login', 'Users::login', ['as' => 'login']);

// Use it in a view

<a href="<?= route_to('login') ?>">Login

Named routes used in this way can also accept parameters:

// The route is defined as:

$routes->add('users/(:id)/gallery(:any)', 'Galleries::showUserGallery/$1/$2', ['as'
=> 'user_gallery');

// Generate the relative URL to link to user ID 15, gallery 12

// Generates: /users/15/gallery/12

<a href="<?= route_to('user_gallery', 15, 12) ?>">View Gallery

Reverse Routing
For even more fine-grained control, you can use
the route_to() function to locate the route that corresponds to the
controller/method and parameters that you know won't change.

// The route is defined as:

$routes->add('users/(:id)/gallery(:any)', 'Galleries::showUserGallery/$1/$2');

// Generate the relative URL to link to user ID 15, gallery 12

// Generates: /users/15/gallery/12

<a href="<?= route_to('Galleries::showUserGallery', 15, 12) ?>">View Gallery

Global Options
Any of the route creation methods can be passed an array of options
that can help further refine the route, doing things like:

• assign a namespace to the controllers, reducing typing
• restrict the route to a specific hostname, or sub-domain
• offset the matched parameters to ignore one or more (that might

have been used for language, version, etc)

Need More? Customize it
If you find that you need something different from the router, it's
simple to replace the RouteCollection class with your own, if you
want a custom solution. The RouteCollection class is only responsible
for reading and parsing the routes, not for doing the actual routing,
so everything will still work with your custom solutions.

Just be sure to share what you create with the rest of us! :)

Whew! There's the goodness that you get to look forward to. At least,
I think I mentioned it all.

Modules in CodeIgniter 4
By Lonnie Ezell on Mar 15, 2016 13 Comments codeigniter

One of the big hot-buttons that came up during discussion about
CodeIgniter 4 features a few months ago was that of HMVC. It seems
that most of the comments fell in one of two uses: either for
displaying "widgets" on the page, or for simply splitting code into
basically modules. In this article, I wanted to look at how modules
can work in the upcoming version of the framework.

NOTE: These examples are all based on pre-release code and the
specifics are subject to change at any time.

Module/HMVC Support?
Let me get this out of the way up front: no, CodeIgniter 4 does not
support either HMVC, or modules. At least, not in the traditional way
that you might think about it. There's no formal definition of module
structure, like you might find in a Yii Extension or Drupal plugin. And,
there's no hierarchical loading of classes through a nest of different
directories.

If that's the case, then how can we support any form of modules?
Autoloading and Namespaces.

Autoloading and Namespaces
The framework now ships with a built-in PSR-4 compliant autoloader,
no Composer needed (though you're always free to use that in
addition to the built-in one).

Why didn't we just use Composer as the core? We talked about it,
and I was, at first, a big proponent for it. However, the more we
talked and researched, the more it was clear that it wasn't the right
thing for the framework. For one thing, it was having an external
script at the core of our framework which left us at their mercy. Also,

http://blog.newmythmedia.com/blog/show/2016-03-15_Modules_in_CodeIgniter_4
http://blog.newmythmedia.com/blog/show/2016-03-15_Modules_in_CodeIgniter_4#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter

in different hosting environments, Composer can become
problematic to update, especially on tightly-secured shared hosting.
Finally, since we didn't have to support all of the flexibility and
features that Composer does, we could make it a touch faster by
default.

Both the system files and your application files can be namespaced.
The system files live under the CodeIgniternamespace, while the
application directory takes on the App namespace by default. You
don't have to namespace your controllers and models if you don't
want to. It's entirely optional and things will still work in the way that
you're accustomed to working.

When you combine these two techniques, though, 90% of the work of
supporting modules is already done for you. Let's look at a quick
example, and then we'll cover the remaining 10% of the solution.

A Quick Example
Imagine we are creating a Blog module. The first thing to do is to
decide on a namespace and then create a home for all of the files to
live. We'll use our company name, Standard, and Blog makes sense
for the sub-namespace, since that describes the entire "module".
While we could put it anywhere, let's create a new directory
alongside the /application directory to hold all of our company's
modules. The folder structure might look something like you're used
to in HMVC:

/application

/standard

 /Blog

 /Config

 /Controllers

 /Helpers

 /Libraries

 /Models

 /Views

/system

Next, open up /application/Config/Autoload.php and let the system
know where to find the files. In this example, we'll just create a
namespace in the autoloader for the entire company namespace,
though you could create additional ones if you want to create one for
each module.

$psr4 = [

 'Config' => APPPATH.'Config',

 APP_NAMESPACE.'\Controllers' => APPPATH.'Controllers',

 APP_NAMESPACE => realpath(APPPATH),

 'Standard' => APPPATH.'../standard'

];

Now, as long as we namespace all of our classes, the system can find
them and they can be used from anywhere.

namespace Standard\Blog;

use Standard\Blog\Models\BlogModel;

use Standard\Blog\Libraries\BlogLibrary;

use Standard\Blog\Config\Blog as BlogConfig;

class BlogController extends \CodeIgniter\Controller

{

 public function index()

 {

 $model = new BlogModel();

 $blogLib = new BlogLibrary();

 $config = new BlogConfig();

 }

}

Simple stuff.

What About Non-Class Files?
If you were paying attention, then you are probably saying, "Sure,
buddy, but what about the non-class files, like helpers, and views?
huh?!" And you're right. Straight PHP cannot load non-class-based
files from namespaces. So, we built that functionality into
CodeIgniter.

The way it works is that it will locate the folder based on the
namespace of the file, and then look for it in the normal sub-
directory. Some examples will clear this up.

Loading Helpers
In our example, we might have a blog_helper file living
at /standard/Blog/Helpers/BlogHelper.php. If this were a class, it
might have a fully-qualified name
like Standard\Blog\Helpers\BlogHelper.php. So we pretend that it is
a class, and use the load_helper() function:

load_helper('Standard\Blog\Helpers\BlogHelper');

And, voila!, it can locate the helper and load it.

Loading Views
When using the module pattern, views can be loaded in the exact
same way, except using the load_view() function.

echo load_view('Standard\Blog\Views\index', $data);

The system will also look within the traditional CodeIgniter
directories within that namespace so you don't have to include it in
the name. The above examples could have also bee done like:

load_helper('Standard\Blog\BlogHelper');

echo load_view('Standard\Blog\index', $data);

While this is not the only way that you can structure things in your
application, I hope this gets you excited about the possibilities and
flexibility that the framework will be bringing to your applications.

First Glimpse at CodeIgniter 4 Database Layer
By Lonnie Ezell on Apr 01, 2016 20 Comments codeigniter

While work on the database layer is still under heavy construction, I
think we're far enough along to be able to give you a glimpse into
how it works, how it's the same, and how it's different from what
you're accustomed to in previous versions.

First things first: how far along is it? At the moment we can connect
to a MySQL database and run both raw queries, and use the Query
Builder to run queries. I just wrapped up tests on the existing Query
Builder features, I believe, so it should be fairly solid at the moment.
What's left? The Query Caching layer needs built, as does the Forge,
and the utility methods, as well as getting the drivers in place and in
shape.

What's the Same?
While the underlying structure of the database engine has been
changed a fair amount, what you'll see while using it will be fairly
familiar. The biggest cosmetic difference is in method names using
CamelCasing instead of snake_casing. The query builder still largely
works like you're used to, so there won't be much to relearn. You
should be able to dive right in and use your years of experience with
just the tiniest amount of time getting accustomed to it.

What's different?
I won't go into all of the details here, just the big items. Instead of a
boring little list, let's take a look at a few examples of it in action.

Configuration
The config files are still mostly like the old ones. There was no need
to reinvent the wheel here since it worked great already. They have

http://blog.newmythmedia.com/blog/show/2016-04-01_FirstGlimpseatCodeIgniter4DatabaseLayer
http://blog.newmythmedia.com/blog/show/2016-04-01_FirstGlimpseatCodeIgniter4DatabaseLayer#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter

been changed to be a simple class, like the rest of them but the fields
are the same.

class Database extends \CodeIgniter\Database\Config

{

 /**

 * Lets you choose which connection group to

 * use if no other is specified.

 *

 * @var string

 */

 public $defaultGroup = 'default';

 /**

 * The default database connection.

 *

 * @var array

 */

 public $default = [

 'dsn' => '',

 'hostname' => 'localhost',

 'username' => '',

 'password' => '',

 'database' => '',

 'dbdriver' => 'MySQLi',

 'dbprefix' => '',

 'pconnect' => false,

 'db_debug' => (ENVIRONMENT !== 'production'),

 'cache_on' => false,

 'cachedir' => '',

 'charset' => 'utf8',

 'dbcollat' => 'utf8_general_ci',

 'swapPre' => '',

 'encrypt' => false,

 'compress' => false,

 'stricton' => false,

 'failover' => [],

 'saveQueries' => true,

];

 //--

}

Raw Queries
Making queries without using the Query Builder is simple. Get a
database instance, run the query() method and get back a result
object.

// Connects to the default connection, 'default' in this example.

$db = Config\Database::connect();

$query = $db->query('SELECT * FROM users');

// Get results as objects.

$results = $query->getResultArray();

// Get results as arrays

$results = $query->getResultObject();

// Get result as custom class instances

$result = $query->getResult('\My\Class');

The first thing to note is that num_rows() has been removed. For the
last few years it's use has been discouraged, and written out of
examples, since some drivers have horrible performance and/or
memory issues when using it. Instead, all result*() methods return
empty arrays if no results, while all row*() methods return null.

Parameter binding still exists:

$query = $db->query('SELECT * FROM users WHERE id > ? AND role = ?', [3, 'Admin']);

Parameter binding has gotten a new trick, though, with named
parameters, for more readable (and flexible) queries:

$query = $db->query('SELECT * FROM users WHERE id > :id AND role = :role',

 ['id' => 3,

 'role' => Admin'

]

);

All values are automatically escaped, of course, to keep your queries
safe.

Saved Queries
One of the big changes in the database layer is that all queries are
saved in history as Query objects, instead of strings in an array. This
is partially to clean up the code and remove some resposibilities
from other classes. But it will also allow for more flexibility in the
Query Caching layer, and other places. Just be aware that if you need
to get $db->getLastQuery() you're getting a Query object back, not a
string.

The query objects hold the query string, which can be retrieved with
and without the parameters bound to it, as well as any error

information that query might have, and performance data (when it
started, how long it took).

Query Builder
The Query builder operates mostly as you're used to, with one big
change. The Query Builder is now it's own class, not part of the driver
files. This helps keep the code cleaner, and works nicely with the new
Query objects and named paramater binding, which is used
throughout the builder.

One of the biggest benefits of having it as a completely separate class
is that it allows us to keep each query completely seperate. There is
no more "query bleeding" where you're in the middle of building a
query and make a call out to another method to retrieve some
values, only to have the other method build it's own query, and
incorrectly using the values from the original query. That's a thing of
the past.

The primary visible change in the Query Builder is how you access
the builder object. Since it's no longer part of the driver, we need a
way to get an instance of it that is setup to work with the current
driver. That's where the new table() method comes into play.

$db = Config\Database::connect();

$result = $db->table('users')

 ->select('id, role')

 ->where('active', 1)

 ->get();

Basically, the main table is now specified in the table() method
instead of the get() method. Everything else works just like you're
used to.

What's Still Coming?
Aside from the previously mentioned parts that need implementing,
there are some nice additions potentially coming down the pike.
There's no guarantee all of these items will make it in, but these are a
handful of the ideas I'd currently like to see make it in the database
layer.

Native Read/Write Connection Support is likely to make it in the
configuration of your database. Once the connections have been
defined, using them is automatic. The Connection will determine if
your query is a write query or read query and choose the correct
connection to use based on that. So, if you have a master/slave
setup, this should make things a breeze.

New QueryBuilder Methods will likely be added. I'm going to scout
out the other frameworks a little more, to see if there's features that
are useful enough to warrant looking into. The following are my short
list, though:

• first() is a convenience method to retrieve the first result itself.
• increment() and decrement() methods would be nice to have.
• chunk() would loop over all matching results in chunks of 100 (or

whatever). This allows you to process potentially thousands or even
millions of rows without completely killing your server or running out
of memory.

Enhanced Model The only reason the CI_Model class exists in v3 is to
provide easy access to the rest of the framework by using magic
methods to access the loaded libraries, etc. That's not really
necessary anymore, since there is no singleton object. So, it only
makes sense to take this opportunity to actually create a Model class
that is useful. The details of this haven't been discussed much in the
Council, yet, so I can't say what will make it in. Over the years,
though, creating base MY_Model classes with a a fair amount of
convenience features has become fairly common. Time to build it
into the core, I think.

Simpler Pagination This idea is ripped straight from Laravel, but the
first project I worked on in Laravel, it was the pagination that blew
me away. This would work hand-in-hand with the Enhanced Model,
allowing you to simply call$model->paginate(20) and it would be
smart enough to figure out the rest of the details. Obviously, there's
more involved than that, but if you've ever used Laravel's version,
you'll know how much of a breath of fresh air it is compared to
CodeIgniter's. Now, there's is built into their ORM, so it might turn
out to be not very feasible for our system, but it's definitely
something I want to look into.

I hope that gets you excited about the future of the framework, and
maybe calms down some fears that things are going to change too
much. One of my big goals while rewriting is to keep the system
familiar, while bringing more modern code practices and flexibility
into the system.

Are there any features from other systems that you love and miss
when you work in CodeIgniter that you'd like us to consider? I won't
say that everything (or even any of it) will make its way into the
system, but we'll definitely consider it.

CodeIgniter 4 HTTP Client
By Lonnie Ezell on Apr 18, 2016 1 Comment codeigniter

It used to be that the majority of the websites were silos, not
communicating with other websites much at all. That has changed a
lot in the last few years, though, to the point where many sites
consume information from external APIs, or communicate with third-
party services, like payment gateways, social networks, and more, all
on a day-to-day basis. For PHP developers, this typically involves the
use of curl to make this happen. That means that any full-stack
framework should provide some form of capabilities to help you out
there. In the upcoming CodeIgniter 4, we've provided a lightweight,
yet still very flexible, HTTP client built-in.

The CURLRequest Class
The CURLRequest class extends our more generic Request class to
provide most of the features that you'd need on a day-to-day basis. It
is a synchronous-only HTTP client. Its syntax is modeled very closely
after the excellent Guzzle HTTP Client. This way if you find that the
built-in client doesn't do everything you need it to, it is very easy to
switch over to using Guzzle and take advantage of some of its more
advanced features, including asynchronous requests, non-reliance on
curl, and more.

Why build our own solution? For the last decade, many developers
have looked to CodeIgniter as the framework that you can download
and have 90% or more of the features you need to build your site at
your fingertips. Bundling something like Guzzle into the framework
doesn't make sense, when Guzzle provides its own HTTP layer,
duplicating a large part of the core system code. If we wanted to
provide a solution, we had to build our own, based around our own
HTTP layer. Being a lightweight solution, it is primarily a wrapper
around curl and so the only real trick was ensuring syntax
compatibility with Guzzle to make your transitions, if you need to do
them, as simple as possible.

http://blog.newmythmedia.com/blog/show/2016-04-18_CodeIgniter_4_HTTP_Client
http://blog.newmythmedia.com/blog/show/2016-04-18_CodeIgniter_4_HTTP_Client#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter
http://docs.guzzlephp.org/en/latest/

NOTE: This does require that the curl library be installed and usable.

A Few Quick Examples
Let's walk through a few quick examples to see how easy and
convenient it is to have a curl wrapper in our bundle of tricks. These
examples are obviously very bare-bones and don't provide all of the
details you would need in a finished application.

A Single Call
Let's say you have another site that you need to communicate with,
and that you only need to grab some information from it once, not as
part of a larger conversation with the site. You can very simply grab
the information you need something like this:

$client = new \Config\Services::curlrequest();

$issues = $client->request('get', 'https://api.github.com/repos/bcit-
ci/CodeIgniter/issues');

The request() method takes the HTTP verb and URI and returns an
instance of CodeIgniter\HTTP\Response ready for you to use.

if ($issues->getStatusCode() == 200)

{

 echo $issues->getBody();

}

Consuming an API
If you're working with an API for more than a single call, you can pass
the base_uri in as one of a number of available options. Then, all
following request URIs are appended to that base_uri.

$client = new \Config\Services::curlrequest(['base_uri' =>
'https://example.com/api/v1/']);

// GET http://example.com/api/v1/photos

$client->get('photos');

// GET http://example.com/api/v1/photos/13

$client->delete('photos/13');

Submitting A Form
Often, you will need to submit a form to an external site, sometimes
even with file attachments. This is easily handled with the class.

$client = new \Config\Servies::curlrequest();

$response = $client->request('POST', 'http://example.com/form', [

 'multipart' => [

 'foo' => 'bar',

 'fuz' => ['bar', 'baz'],

 'userfile' => new CURLFile('/path/to/file.txt')

]

]);

Multitude of Options
The library supports a wide array of options, allowing you to work
with nearly any situation you might find yourself up against,
including:

• setting auth values for HTTP Basic or Digest authentication
• setting arbitrary header values for more complex authentication (or

any other needs)

• specifying the location of PEM-formatted certificates,
• restricting execution time
• allowing redirects to be followed,
• return content even when it encounters an error
• easily upload JSON content
• send query string or POST variables with the request
• specify whether SSL certificates should be validated or not (helpful

for development servers who don't have full SSL certificates in place)
• and more.

Hopefully, this new addition to the framework will come in handy
during development and help make using curl much more pleasant.

Getting Started With CodeIgniter 4 Pre-Alpha 1
By Lonnie Ezell on Jun 25, 2016 8 Comments codeigniter

Now that the ribbon has been taken off of the first semi-release of
CodeIgniter 4, people are wondering how they get started with it. A
couple of things have changed that make a big impact on getting
started when you're expecting it to be just like CI3. This article aims
to help you out there.

Download It
There are two different ways you can download it currently, but
they're both basically the same thing.

1. From the terminal type: git clone git@github.com:bcit-
ci/CodeIgniter4.git which will pull down the latest version of
the develop branch into a new directory called CodeIgniter4.

2. From GitHub do a straight download by clicking Clone or Download and
then selecting Download Zip. Unzip into a new folder when you're done.

Look Around
If you start taking a look around the new code you'll see a slightly
different folder layout than you're used to, though the changes are
minimal:

/application - Your app's files go here

/public - This is the "web root" of your application. index.php is here

/system - CodeIgniter lives here

/tests - Holds tests for CodeIgniter and your application

/user_guide_src - The source files for the user guide. Instructions how to build
them.

/writable - A place for any folder that needs to be writable

http://blog.newmythmedia.com/blog/show/2016-06-25_Getting_Started_With_CodeIgniter_4_Pre-Alpha_1
http://blog.newmythmedia.com/blog/show/2016-06-25_Getting_Started_With_CodeIgniter_4_Pre-Alpha_1#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter
https://github.com/bcit-ci/CodeIgniter4

The two most important right now are the public and
the user_guide_src folders. public holds the new web root of the
application. Best practices tell us that your application should live
outside of the web and not be accessible from a browser. With this
layout, only the files in public are available to end-users through the
browser. This is in line with every other major framework out there,
but is a change from the way that CodeIgniter has always done it.

The user_guide_src folder contains all of the current documentation
for the framework. To the best of our knowledge it is completely up
to date with the current release, and we plan on keeping it in sync as
we go. This will be your best friend, as you explore over the coming
days or weeks. While this isn't the generated HTML, all of the files in
the source folder inside it are human-readable and laid out similarly
to what you're used to in CI3 docs. Take time to read through the
new things in here as most of your questions should be answered,
and you'll hopefully find some nice surprises lurking in places.

The following pages are good reads to get started with:

• Application Structure
• Autoloading Files
• Services
• Global Functions and Constants
• URI Routing
• Controllers
• Models
• Views

Start Playing
In order to start playing around with the new code, you'll need to get
it running in a browser. There's a number of ways to do it, but we'll
cover two here.

https://github.com/bcit-ci/CodeIgniter4/blob/develop/user_guide_src/source/concepts/structure.rst
https://github.com/bcit-ci/CodeIgniter4/blob/develop/user_guide_src/source/concepts/autoloader.rst
https://github.com/bcit-ci/CodeIgniter4/blob/develop/user_guide_src/source/concepts/services.rst
https://github.com/bcit-ci/CodeIgniter4/blob/develop/user_guide_src/source/general/common_functions.rst
https://github.com/bcit-ci/CodeIgniter4/blob/develop/user_guide_src/source/general/routing.rst
https://github.com/bcit-ci/CodeIgniter4/blob/develop/user_guide_src/source/general/controllers.rst
https://github.com/bcit-ci/CodeIgniter4/blob/develop/user_guide_src/source/database/model.rst
https://github.com/bcit-ci/CodeIgniter4/blob/develop/user_guide_src/source/general/views.rst

PHP Server
PHP has a built-in web server now. This is the simplest way to get
running. Jump to the command line, navigate to the public directory,
and type the following:

$ php -S localhost:8000

That's it. Back to your browser, navigate to http://localhost:8000 and
you should see the shiny new CI4 welcome page.

Virtual Host
A more permanent solution is to have another web server running
locally, like Apache or NGINX, and create a new virtual host for it.
This allows you to create a name for the site, like ci4.dev, and use
that in your browser. This is especially helpful so that you don't have
to worry about RewriteBase commands for Apache config, or any
other tricky ways to get past the public folder. When you setup the
virtual host, make sure it is pointing to the public folder or it won't
work.

Here are some helper guides for those of you using popular AMP
stacks locally:

• MAMP
• XAMPP
• WAMP

Note that most of these are essentially the same thing, since you're
editing raw Apache config files.

Laravel Homestead is another excellent solution for a PHP7 virtual
machine running under NGINX.

http://foundationphp.com/tutorials/vhosts_mamp.php
http://foundationphp.com/tutorials/apache_vhosts.php
http://www.techrepublic.com/blog/smb-technologist/create-virtual-hosts-in-a-wamp-server/
https://laravel.com/docs/5.2/homestead

Lastly, have fun!

Using Entities in CodeIgniter 4
By Lonnie Ezell on Oct 25, 2016 9 Comments codeigniter

The Repository Design Pattern is very useful in application design. At
the core of this, though, is the Entity, a class that simply represents a
single object of whatever data you are modeling. This could be a
single User, a Comment, an Article, or anything else in your app. The
trick is to ensure that’s all it is. It can (and should!) handle some of
the business logic, and can include convenience methods to combine
data in various ways, or work with other Repositories to get related
data. But it shouldn’t have a care in the world about how to persist
itself. That’s the Repository’s job.

In today’s tutorial, we’ll skip all of the steps of using a Repository and
just look at how to make working with Entity classes as simple as
possible, while still being very flexible.

Getting Entities from the Model
The first thing to look at is how do we get this data from the model
itself? Lucky for us, CodeIgniter’s Database layerhas been able to
convert the results from database queries into custom classes since
at least version 2. I didn’t know about this until version 3 was about
ready to be released, as it wasn’t documented at the time. Doing this
is as easy as passing fully-qualified class name as the only parameter
to the getResult() method:

$rows = $db->table(‘users’)->limit(20)->get();

$user = $rows->getResult(‘App\Entities\User’);

This would give you an array of User instances. As long as the Entity
class has properties that a) match the names of the columns in the
database, and b) the model can access those parameters, their
values will be filled in and you’ll be able to work with the classes

http://blog.newmythmedia.com/blog/show/2016-10-25_Entities_In_CodeIgniter_4
http://blog.newmythmedia.com/blog/show/2016-10-25_Entities_In_CodeIgniter_4#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter
https://code.tutsplus.com/tutorials/the-repository-design-pattern--net-35804
https://bcit-ci.github.io/CodeIgniter4/database/results.html#custom-result-objects

straight-away. Let’s take a look at some very basic versions to see this
in action.

The UserModel might look something like this:

<?php namespace App\Models;

use CodeIgniter\Model;

class UserModel extends Model

{

 protected $table = ‘users’;

 protected $returnType = ‘App\Entities\User’;

 protected $useSoftDeletes = false;

 protected $allowedFields = [

 ‘username’, ‘email’, ‘password_hash’

];

 protected $useTimestamps = true;

}

Notice the $returnType property? By setting this to the Entity class, all
of our results will be returned as instances of App\Entities\User by
default. We can always change that at runtime if we need to.

Also, notice the $allowedFields property. This is especially important
for a couple of reasons. The first is that the Model class forces you to
fill this in if you want to pass it an array of key/value pairs during
a save(), insert(), or update() call to help protect against Mass
Assignment attacks, or simple human error. But it will also come in
handy when we want to save the object back to the database. More
on that a little later.

The Entity Class
Now lets look at the simplest version of the Entity class that we can
make. In the next blog post we’ll explore a much more powerful
version. We would create a new file at /application/Entities/User.php,
creating the new Entities folder since it’s not there by default. It
might look something like this:

<?php namespace App\Entities;

class User

{

 public $id;

 public $username;

 public $email;

 public $password_hash;

 public $created_at;

 public $updated_at;

 public function setPassword(string $password)

 {

 $this->password_hash = password_hash($password, PASSWORD_DEFAULT);

 return $this;

 }

 public function createdOn($format = ‘Y-m-d’)

 {

 $date = new DateTime($this->created_at);

 return $date->format($format);

 }

}

As I said, this is an extremely basic version. But it works to
demonstrate the usefulness. It contains properties for all of the
columns in the database, not just the ones listed in $allowedFields.
Since they are all public, they can be accessed from outside the class
whenever you need them, whether in a controller, view, or in the
model itself when saving. In real apps, we would likely want to make
those protected properties to keep things a little safer. We’ll look at
that in the next post, and combine it with some powerful
convenience methods to really make working with Entities simple
and, dare I say it, fun.

This small example, also includes two convenience methods. The first
helps ensure a business rule by make a single place that determines
how our password is hashed. The second allows you to retrieve a
formatted version of the created_at date. Neither of these are
ground-breaking. They’re only there to give you some ideas of basic
methods you might find helpful.

Saving the Entity
CodeIgniter’s Model class is smart enough to recognize Entity classes
whenever you perform a save(), update(), or insert() call, and
convert that class to an array of key/value pairs that can be used to
create or update the record in the database.

But, how does it know which fields should be allowed to update the
database? Remember the $allowedFields array the model has?
That’s the key. It uses that list of fields and grabs the values from the
Entity class. In our example, it would create an array that looks
something like:

[

 ‘username’ => ‘blackjack’,

 ‘email’ => ‘jack.black@example.com’,

 ‘password_hash’ => ‘. . .’

]

Notice that it did not grab the id, created_at, or update_at fields.
That’s because the id field is automatically assigned by the database
and we shouldn’t be able to change it, and the date fields are
managed by the Model class itself, and we don’t want outside classes
mucking with the dates.

So, when it comes to saving your data, there’s nothing special to do.
Just pass your Entity to the save(), update(), or insert() method,
and the Model takes care of the rest.

// Grab a user

$user = $userModel->find(15);

// Update their email

$user->email = ‘blackjack@example.com’;

// Save the user

$userModel->save($user);

Up Next
Hopefully, this gets you interested in exploring this type of pattern
with your applications. Even if you don’t do a full-repository pattern,
this simple change makes your code much more manageable and
can be very powerful.

In the next post, we’ll take it a little farther by hiding those class
properties, but still ensuring they’re accessible to the Model during
creation and saving. Then we’ll craft a small Entity class that we can
base all of our Entities from that provides some magic that allows us
to manipulate the data on the way in and out, and even provide a

new fill()method that takes an array and populates/changes the
class properties. All of this allows for much more freedom, power,
and flexibility in your Entity classes.

Better Entities in CodeIgniter 4
By Lonnie Ezell on Oct 27, 2016 0 Comments codeigniter

Continuing on from the previous post, this tutorial will look at taking our
basic Entities and making the more flexible, and more capable. Again, this
isn’t meant to be a full demonstration of the Repository pattern, but simply
examining one particular aspect of it.

What was wrong with the previous example? For starters, all of our class
properties had to be public to allow it to work with the Model. While that’s
not the worst thing in the world, it is definitely not ideal.

Getters and Setters
The first step is to make the class properties protected instead of public. In
order to make those visible to the Model, we’ll use
the __get() and __set() magic methods to provide access.

public function __get(string $key)

{

 if (isset($this->$key))

 {

 return $this->$key;

 }

}

public function __set(string $key, $value = null)

{

 if (isset($this->$key)) 

 { 

 $this->$key = $value; 

 }

http://blog.newmythmedia.com/blog/show/2016-10-27_Better_Entities_In_CodeIgniter_4
http://blog.newmythmedia.com/blog/show/2016-10-27_Better_Entities_In_CodeIgniter_4#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter
http://blog.newmythmedia.com/blog/show/2016-10-25_Entities_In_CodeIgniter_4

}

This solves our problem, but simply adds extra code between the value and
your code, which is good for encapsulation, but we can do better here. There
are going to be numerous times that you want to perform some logic
whenever we a value on the Entity. For example, you might want to
automatically hash a password whenever it’s set. Or you might want to
always keep your dates stored as DateTime instances. So, how do we make
this simple?

For that, let’s add some new functionality to the setter that allows us to call
any method that had set_ and then property name, like set_password.

public function __set(string $key, $value = null)

{

 // if a set* method exists for this key, 

 // use that method to insert this value. 

 $method = 'set_'.$key; 

 if (method_exists($this, $method)) 

 { 

 $this->$method($value); 

 } 

 // A simple insert on existing keys otherwise. 

 elseif (isset($this->$key)) 

 { 

 $this->$key = $value; 

 }

}

Now, you could solve your business needs with simple little functions like
these:

protected function set_password(string $value)

{

 $this->password = password_hash($value, PASSWORD_BCRYPT);

}

protected function set_last_login(string $value)

{

 $this->last_login = new DateTime($value);

}

Whenever you set $user->password = ‘abc’, or $user->last_login = ’10-15-
2016 3:42pm’ your custom methods will automatically be called, storing the
property as your business needs dictate. Let’s do the same thing for the
getters.

public function __get(string $key) 

{ 

 // if a set* method exists for this key, 

 // use that method to insert this value. 

 if (method_exists($this, $key)) 

 { 

 return $this->$key(); 

 }  

 if (isset($this->$key)) 

 { 

 return $this->$key; 

 } 

}

In this case, we’re simply checking for a method with the exact name as the
class property. You can set these methods as public and then it would work

the same, no matter whether it was called as a method or a property, $user-
>last_login or $user->last_login():

public function last_login($format=‘Y-m-d H:i:s’)

{

 return $this->last_login->format($format);

}

By setting a default value for $format, it works either way, but you can now
get the value in the format you need it at that time, instead of being restricted
to a single format.

Filler
This has already helped our classes to become more capable and flexible, at
the same time helping us to maintain our business rules, and still easily be
saved to the database and gotten back out again intact. But wouldn’t it be nice
if we could just shove an array of key/value pairs at the class and have it fill
the properties out automatically, but only work with existing properties? This
makes it simple to grab data from $_POST, create a new Entity class, and
shove it there before saving. Even better if we can customize data on the way
in the same way we did with setters, right? Welcome to the fill() method:

public function fill(array $data) 

{ 

 foreach ($data as $key => $var) 

 { 

 $method = 'fill_'. $key; 

 if (method_exists($this, $method)) 

 { 

 $this->$method($var); 

 }  

 elseif (property_exists($this, $key)) 

 { 

 $this->$key = $var; 

 } 

 } 

}

A quick example should make this one make sense. First, let’s grab the POST
data, add it to a new User object, and save it to the database:

$data = $_POST;

$user = new App\Entities\User();

$user->fill($data);

$userModel->save($user);

If this were a registration form we were handling, we might be getting
apassword field that we wanted to make sure was hashed. So, a
quick fill_ method and we’re good to go. For this example, we’ll just re-use
the setter we created earlier:

protected function fill_password(string $value)_

{

 $this->set_password($value);

}

The Entity Class
To make this all simple to re-use, we should create a new Entity class that
our Entities can extend and get these features automatically. Here’s one such
class, that also takes care of our timestamps, including timezone conversions.

<?php namespace Myth;

/**

 * Class Entity

 *

 * A base class for entities that provides some convenience methods

 * that make working with entities a little simpler.

 *

 * @package App\Entities

 */

class Entity

{

 /**

 * Given an array of key/value pairs, will fill in the

 * data on this instance with those values. Only works

 * on fields that exist.

 *

 * @param array $data

 */

 public function fill(array $data)

 {

 foreach ($data as $key => $var)

 {

 $method = 'fill_'. $key;

 if (method_exists($this, $method))

 {

 $this->$method($var);

 }

 elseif (property_exists($this, $key))

 {

 $this->$key = $var;

 }

 }

 }

 //--

 //--

 // Getters

 //--

 /**

 * Returns the created_at field value as a string. If $format is

 * a string it will be used to format the result by. If $format

 * is TRUE, the underlying DateTime option will be returned instead.

 *

 * Either way, the timezone is set to the value of $this->timezone,

 * if set, or to the app's default timezone.

 *

 * @param string $format

 *

 * @return string

 */

 public function created_at($format = 'Y-m-d H:i:s'): string

 {

 $timezone = isset($this->timezone)

 ? $this->timezone

 : app_timezone();

 $this->created_at->setTimezone($timezone);

 return $format === true

 ? $this->created_at

 : $this->created_at->format($format);

 }

 //--

 /**

 * Returns the updated_at field value as a string. If $format is

 * a string it will be used to format the result by. If $format

 * is TRUE, the underlying DateTime option will be returned instead.

 *

 * Either way, the timezone is set to the value of $this->timezone,

 * if set, or to the app's default timezone.

 *

 * @param string $format

 *

 * @return string

 */

 public function updated_at($format = 'Y-m-d H:i:s'): string

 {

 $timezone = isset($this->timezone)

 ? $this->timezone

 : app_timezone();

 $this->updated_at->setTimezone($timezone);

 return $format === true

 ? $this->updated_at

 : $this->updated_at->format($format);

 }

 //--

 //--

 // Setters

 //--

 /**

 * Custom value for the `created_at` field used with timestamps.

 *

 * @param string $datetime

 *

 * @return $this

 */

 public function set_created_at(string $datetime)

 {

 $this->created_at = new \DateTime($datetime, new \DateTimeZone('UTC'));

 return $this;

 }

 //--

 /**

 * Custom value for the `updated_at` field used with timestamps.

 *

 * @param string $datetime

 *

 * @return $this

 */

 public function set_updated_at(string $datetime)

 {

 $this->updated_at = new \DateTime($datetime, new \DateTimeZone('UTC'));

 return $this;

 }

 //--

 //--

 // Magic

 //--

 /**

 * Allows Models to be able to get any class properties that are

 * stored on this class.

 *

 * For flexibility, child classes can create `get*()` methods

 * that will be used in place of getting the value directly.

 * For example, a `created_at` property would have a `created_at`

 * method.

 *

 * @param string $key

 *

 * @return mixed

 */

 public function __get(string $key)

 {

 // if a set* method exists for this key,

 // use that method to insert this value.

 if (method_exists($this, $key))

 {

 return $this->$key();

 }

 if (isset($this->$key))

 {

 return $this->$key;

 }

 }

 //--

 /**

 * Allows Models to be able to set any class properties

 * from the result set.

 *

 * For flexibility, child classes can create `set*()` methods

 * to provide custom setters for keys. For example, a field

 * named `created_at` would have a `set_created_at` method.

 *

 * @param string $key

 * @param null $value

 */

 public function __set(string $key, $value = null)

 {

 // if a set* method exists for this key,

 // use that method to insert this value.

 $method = 'set_'.$key;

 if (method_exists($this, $method))

 {

 $this->$method($value);

 }

 // A simple insert on existing keys otherwise.

 elseif (isset($this->$key))

 {

 $this->$key = $value;

 }

 }

 //--

}

Upgrading the Parser in CodeIgniter 4
By Lonnie Ezell on Apr 05, 2017 7 Comments codeigniter

One thing the community has wanted has always been a template
engine designed specifically for CodeIgniter. After a lot of discussion
and back and forth during the planning phase, it was decided that we
would not be bundling a template engine in, but we would make it
fairly simple to integrate third-party choices. In part this was due to
the wide variety of engines already available and preferences of the
many developers that use the framework. Being interface-driven,
that goal has been met.

However, we also decided to keep the simple Parser that we've
always had. One thing that came up, though, was that if we were
going to keep it, it needed to be much more useful than it has been
in previous versions. Work on this is nearing completion, so I thought
I would take a moment to highlight some of the new changes it
brings.

The More Things Change
Looping and variable substitution work just like they always have.
Variables wrapped in curly braces will be substituted with the
variable's value. You can still loop over arrays of data by simply using
opening and closing curly braces.

<h1>{blog_title} - {blog_heading}</h1>

{blog_entry}

 <div>

 <h2>{title}</h2>

 <p>{body}{/p}

 </div>

{/blog_entry}

http://blog.newmythmedia.com/blog/show/2017-04-05_upgrading_the_parser_in_CodeIgniter4
http://blog.newmythmedia.com/blog/show/2017-04-05_upgrading_the_parser_in_CodeIgniter4#disqus_thread
http://blog.newmythmedia.com/blog/category/codeigniter

The one major change here, though, is that PHP is no longer
executed when parsing views.

The Little Things
Since you can no longer use any PHP, you need more tools to make
the templates work for you.

Conditional Logic
Simple conditional logic is now available with the if, elseif,
and else tags.

{if role=='admin'}

 <h1>Welcome, Admin</h1>

{elseif role=='moderator'}

 <h1>Welcome, Moderator</h1>

{else}

 <h1>Welcome, User</h1>

{endif}

While they syntax might look a little cleaner, it is treated exactly like a
standard PHP conditional, and all standard PHP rules would apply
here. You can use any of the comparison operators you would
normally, like ==, ===, !==, <, >, etc.

No-Parse Blocks
If you have a section of your template that you don't want the Parser
to touch, you can do that easily by wrapping it in noparse tags.

{noparse}

 ... Your un-parsed content lives here ...

{/noparse}

Comments
It's a tiny thing, but sometimes you just have to leave yourself notes
in the templates, so it now supports comments that are never
displayed in the final HTML.

{# This is a comment #}

Automatic Escaping
All variable substitutions are automatically escaped for safer views,
greatly reducing the chance of XSS attacks and more. You can choose
a different escaping context (html, attr, css, or js) depending on
where the variable is appearing. It defaults to html so most of the
time you won't need to do anything special to make it happen.

// Defaults to basic HTML escaping

{ some_var }

// Escape within HTML attributes

{ some_var|esc(attr) }

// Escape within Javascript code

{ some_var|esc(js) }

// Escape within CSS style blocks

{ some_var|esc(css) }

If you don't want it escaped at all, you can use {! and !} braces
instead of plain curly braces and that one variable will not be
escaped.

{! not_escaped_var !}

This one is still being finalized, so it's possible the syntax might
change, but this is the current plan.

The Bigger Things
These next two items bring a fair amount of power to what used to
be an almost pointless parser.

Filters
You saw a hint of this above when I was talking about escaping, but
the parser now supports filtering the variable to affect its final
display. Filters are separated by pipes (|).

// Output: FILTERED

{ filtered | upper }

// Output: Filtered

{ FILTERED | title }

Filters can have one or more parameters to specify options.

// Output: 2017-10-03

{ myDate | date(Y-m-d) }

Multiple filters can be chained together.

// Output: 2018-10-03

{ myDate | date_modify(+1 year) | date(Y-m-d) }

Filters typically only work on strings, but CodeIgniter will still ship
with a number of helpful filters. And it's very simple to create your
own custom ones. The built-in ones are currently:

• abs
• capitalize
• date
• date_modify
• default

• esc
• excerpt
• highlight
• highlight_code
• limit_words
• limit_chars
• lower
• nl2br
• number_format
• prose
• round
• strip_tags
• title
• upper

Plugins
Word of Warning: This feature is a concept only at this time, and
actually implementation hasn't started, yet, but this is what's kicking
around in my head. Syntax likely to change.

Plugins are a nod to Expression Engine's syntax that allows you to
extend the capability of the Parser to fit most any need that you
might have. Heck, you could probably flesh out any missing features
needed for a template engine through plugins.

Basically, plugins allow you to specify an alias tag that a library's
features can be called from. They are very similar in concept to View
Cells, though I believe they'll be able to do some things that Cells
can't. The only plugin expected to ship with the framework is the
View Cell feature, actually.

This probably best makes sense with an example. Let's just use the
View Cell feature to demonstrate, then. With Cells you can specify a
class/method to generate and return HTML that is rendered in the
Cell's place. It's tag might look something like this:

// A Simple version

{ cell: Acme\Blog\Posts::recentPosts }

// With Parameters

{ cell: Acme\Blog\Posts::recentPosts category=codeigniter limit=5 }

If the Acme\Blog package wanted to make things a little cleaner and
create some View plugins, they might provide something like the
following:

{ blog:recentPosts category=codeigniter limit=5 }

Again, all of this plugin syntax is preliminary and subject to change,
but it's coming.

Hopefully, this type of Parser can be useful to some of you.

Creating a New Base Controller

Under ./application/Controllers we will create a new folder called
Base.

So now we should have a folder structure like this:

./application/Controllers/Base

We will create three new Controllers.

 ./application/Controllers/Base/BaseController.php

./application/Controllers/Base/AdminController.php

./application/Controllers/Base/PublicController.php

We will also be modifying the Home Controller to take advantage of
our new Controllers.

The BaseController
./application/Controllers/Base/BaseController.php

<?php namespace App\Controllers\Base;

/**
 * ---

 * Editor : PhpStorm 2016.3.2
 * Date : 6/29/2017
 * Time : 10:22 AM
 * Authors : Raymond L King Sr.
 * ---

 *
 * Class BaseController
 *
 * @project ci4
 * @author Raymond L King Sr.
 * @link http://www.procoversfx.com
 * @copyright Copyright (c) 2009 - 2017 Pro Covers FX, LLC.
 * @license http://www.procoversfx.com/license
 * ---

 */

/**
 * Start the sessions
 * We then need to add this to access the sessions elsewhere
 * $session = \Config\Services::session();
 * SEE: The Home Controller
 */

$session = \Config\Services::session();
$session->start();

/**
 * Class BaseController
 *
 * @package App\Controllers\Base
 */
class BaseController extends \CodeIgniter\Controller
{

 /**
 * Class variables - public, private, protected and static.
 * --

 */

 /**
 * @var array
 */
 protected $helpers = [];

 /**
 * __construct ()
 * --

 *
 * Class Constructor
 *
 * NOTE: Not needed if not setting values or extending a Class.
 *
 */
 public function __construct(...$params)
 {
 parent::__construct(...$params);

 // load helpers - helper(['url', 'form']);
 helper(['url']);
 }

} // End of BaseController Class.

/**
 * ---

 * Filename: BaseController.php
 * Location: ./application/Controllers/Base/BaseController.php
 * ---

 */

The AdminController
./application/Controllers/Base/AdminController.php

<?php namespace App\Controllers\Base;

/**
 * ---

 * Editor : PhpStorm 2016.3.2
 * Date : 6/29/2017
 * Time : 10:22 AM
 * Authors : Raymond L King Sr.
 * ---

 *
 * Class AdminController
 *
 * @project ci4
 * @author Raymond L King Sr.
 * @link http://www.procoversfx.com
 * @copyright Copyright (c) 2009 - 2017 Pro Covers FX, LLC.
 * @license http://www.procoversfx.com/license
 * ---

 */

/**
 * Class AdminController
 *
 * @package App\Controllers\Base
 */
class AdminController extends BaseController
{

 /**
 * Class variables - public, private, protected and static.
 * --

 */

 /**
 * __construct ()

 * --

 *
 * Class Constructor
 *
 * NOTE: Not needed if not setting values or extending a Class.
 *
 */
 public function __construct (...$params)
 {
 parent::__construct(...$params);

 }

} // End of AdminController Class.

/**
 * ---

 * Filename: AdminController.php
 * Location: ./application/Controllers/Base/AdminController.php
 * ---

 */

The PublicController
./application/Controllers/Base/PublicController.php

<?php namespace App\Controllers\Base;

/**
 * ---

 * Editor : PhpStorm 2016.3.2
 * Date : 6/29/2017
 * Time : 10:22 AM
 * Authors : Raymond L King Sr.
 * ---

 *
 * Class PublicController
 *
 * @project ci4
 * @author Raymond L King Sr.
 * @link http://www.procoversfx.com
 * @copyright Copyright (c) 2009 - 2017 Pro Covers FX, LLC.
 * @license http://www.procoversfx.com/license
 * ---

 */

/**
 * Class PublicController
 *
 * @package App\Controllers\Base
 */
class PublicController extends BaseController
{

 /**
 * Class variables - public, private, protected and static.
 * --

 */

 /**
 * __construct ()

 * --

 *
 * Class Constructor
 *
 * NOTE: Not needed if not setting values or extending a Class.
 *
 */
 public function __construct(...$params)
 {
 parent::__construct(...$params);

 }

} // End of PublicController Class.

/**
 * ---

 * Filename: PublicController.php
 * Location: ./application/Controllers/Base/PublicController.php
 * ---

 */

The Modified Home Controller
./application/Controllers/Home.php

<?php namespace App\Controllers;

//use CodeIgniter\Controller;
//use App\Controllers\Base\AdminController;
use App\Controllers\Base\PublicController;

//class Home extends Controller
//class Home extends AdminController
class Home extends PublicController
{
 /**
 * Class variables - public, private, protected and static.
 * --

 */

 /**
 * __construct ()
 * --

 *
 * Class Constructor
 *
 * NOTE: Not needed if not setting values or extending a Class.
 *
 */
 public function __construct (...$params)
 {
 parent::__construct(...$params);

 }

 public function index()
 {
 return view('welcome_message');
 }

 //---

} // End of Home Class

/**
 * ---

 * Filename: Home.php
 * Location: ./application/Controllers/Home.php
 * ---

 */

	NOTE: 6
	The articles in this document are based on unreleased, pre-alpha versions of the software and specifics may have changed. 6
	This should not be used for a Production Website. 6
	Requests and Responses In CodeIgniter 4 7
	At A Glance 7
	IncomingRequest 7
	Response 8

	A Quick Example 8

	Content Negotiation in CodeIgniter 4 11
	What Is Content Negotiation? 11
	A Quick Example 12

	Dependency Injection in CodeIgniter 4 14
	Why Is DI Important? 14
	The Rise and Fall of the Container 16
	Services 17
	A Quick Example 19
	Coupling? 20

	Routes in CodeIgniter 4 21
	Route Basics 21
	Module-like Functionality 22

	Closures 22
	Placeholders 23

	HTTP Verbs 24
	Generating standard Resource routes 24

	No More Magic 25
	Groups 25
	Environment Groups 26

	Redirect Old Routes 26
	Using Routes In Views 26
	Named Routes 27
	Reverse Routing 27

	Global Options 28
	Need More? Customize it 28

	Modules in CodeIgniter 4 29
	Module/HMVC Support? 29
	Autoloading and Namespaces 29
	A Quick Example 30
	What About Non-Class Files? 32
	Loading Helpers 32
	Loading Views 32

	First Glimpse at CodeIgniter 4 Database Layer 34
	What's the Same? 34
	What's different? 34
	Configuration 34
	Raw Queries 36
	Saved Queries 37
	Query Builder 38

	What's Still Coming? 39

	CodeIgniter 4 HTTP Client 41
	The CURLRequest Class 41
	A Few Quick Examples 42
	A Single Call 42
	Consuming an API 42
	Submitting A Form 43
	Multitude of Options 43

	Getting Started With CodeIgniter 4 Pre-Alpha 1 45
	Download It 45
	Look Around 45
	Start Playing 46
	PHP Server 47
	Virtual Host 47

	Using Entities in CodeIgniter 4 49
	Getting Entities from the Model 49
	The Entity Class 51

	Saving the Entity 52
	Up Next 53

	Better Entities in CodeIgniter 4 55
	Getters and Setters 55
	Filler 58
	The Entity Class 59

	Upgrading the Parser in CodeIgniter 4 67
	The More Things Change 67
	The Little Things 68
	Conditional Logic 68
	No-Parse Blocks 68
	Comments 69
	Automatic Escaping 69

	The Bigger Things 70
	Filters 70
	Plugins 71

	Creating a New Base Controller 73
	The BaseController 74
	The AdminController 76
	The PublicController 78
	The Modified Home Controller 80
	NOTE:
	The articles in this document are based on unreleased, pre-alpha versions of the software and specifics may have changed.
	This should not be used for a Production Website.
	Requests and Responses In CodeIgniter 4
	At A Glance
	IncomingRequest
	Response

	A Quick Example

	Content Negotiation in CodeIgniter 4
	What Is Content Negotiation?
	A Quick Example

	Dependency Injection in CodeIgniter 4
	Why Is DI Important?
	The Rise and Fall of the Container
	Services
	A Quick Example
	Coupling?

	Routes in CodeIgniter 4
	Route Basics
	Module-like Functionality

	Closures
	Placeholders

	HTTP Verbs
	Generating standard Resource routes

	No More Magic
	Groups
	Environment Groups

	Redirect Old Routes
	Using Routes In Views
	Named Routes
	Reverse Routing

	Global Options
	Need More? Customize it

	Modules in CodeIgniter 4
	Module/HMVC Support?
	Autoloading and Namespaces
	A Quick Example
	What About Non-Class Files?
	Loading Helpers
	Loading Views

	First Glimpse at CodeIgniter 4 Database Layer
	What's the Same?
	What's different?
	Configuration
	Raw Queries
	Saved Queries
	Query Builder

	What's Still Coming?

	CodeIgniter 4 HTTP Client
	The CURLRequest Class
	A Few Quick Examples
	A Single Call
	Consuming an API
	Submitting A Form
	Multitude of Options

	Getting Started With CodeIgniter 4 Pre-Alpha 1
	Download It
	Look Around
	Start Playing
	PHP Server
	Virtual Host

	Using Entities in CodeIgniter 4
	Getting Entities from the Model
	The Entity Class

	Saving the Entity
	Up Next

	Better Entities in CodeIgniter 4
	Getters and Setters
	Filler
	The Entity Class

	Upgrading the Parser in CodeIgniter 4
	The More Things Change
	The Little Things
	Conditional Logic
	No-Parse Blocks
	Comments
	Automatic Escaping

	The Bigger Things
	Filters
	Plugins

	Creating a New Base Controller
	The BaseController
	The AdminController
	The PublicController
	The Modified Home Controller

